
Punctuated Simplification of Man-Made Objects
Justin Jang, Peter Wonka, William Ribarsky, and Christopher D. Shaw

GVU Center, Georgia Institute of Technology and Charlotte Visualization Center, UNC Charlotte

Abstract
We present a simplification algorithm for manifold polygonal meshes of plane-dominant models. Models of this type are likely to
appear in man-made environments. While traditional simplification algorithms focus on generality and smooth meshes, the
approach presented here considers a specific class of man-made models. By detecting and classifying edge loops on the mesh and
providing a guided series of binary mesh partitions, the approach generates a series of simplified models, each of which better
respects the semantic feel of these kinds of models than conventional approaches. A guiding principle is to eliminate simplifications
that do not make sense in constructed environments. This, coupled with the concept of “punctuated simplification”, leads to an
approach that has both efficiency and high visual quality. Comparative results are given.

1. Introduction

A great deal of current modeling and visualization effort is
directed towards triangle meshes. Models produced often
have a high amount of geometric detail. To maintain high
frame rates during interactive visualization, it is a common
strategy to create different levels of simplification for one
object and switch between these representations during
runtime. The levels of simplifications are also called levels
of detail (or LODs) of the model.

Simplification algorithms are often demonstrated on
models from the Stanford scanning repository [Sta04],
which includes the well-known models of a bunny, a
Buddha statue and Michelangelo’s David. These models
can be iteratively simplified where each new level of
simplification has one vertex less than the previous one
[Gar97] [Hop96].

Although impressive results can be achieved for these
models, there is still the lingering problem that current
automatic simplification algorithms perform poorly on a
large class of objects, man-made objects. Often designers
still have to create simplified versions along with the
original versions for these models.

In contrast to the previously mentioned models, which
are dominated by smooth differential surfaces, man-made
objects are usually dominated by features. These models
contain many sharp edges and for large parts of the model
the triangular mesh is not an approximation to a smooth
differential surface. Instead, the mesh represents the actual
piece-wise linear surface. Examples include furniture,
machine parts, electronic devices and buildings (Figure 1).

Figure 1: Models with differential (left) and non-
differential (right) surfaces.

If we apply current simplification methods to man-made
models, various incongruities may occur and result in

simplifications that deviate from the ideal. The following
are weaknesses of per-vertex simplification schemes:
- Small features are merged into new larger ones. This is
illustrated in Figure 2a. Here, the larger features have
characteristics not present in the smaller features. In this
case, new face orientations are introduced.
- Many intermediate steps of the calculated simplifications
are intuitively not correct (see Figure 2b). The
simplification of a wheel in Figure 3 illustrates this
problem. The simplification shown on the right has a low
visual quality (in this case due to violation of symmetry
(also see Figure 2c)) and is not very useful for most
applications.
- It is not clear which intermediate simplification steps are
meaningful.

Figure 2: Problems with successive vertex merging. Small
features merge into larger ones (a). In the window with
frame (b) and the circle (c), some intermediate steps are
intuitively not correct.

In this paper we take a different approach to the
simplification of man-made objects. Our approach seeks to
identify features in a model and removes them in a
consistent manner. Note that our approach to handle
features is different than previous approaches [Kho03,
Poj03]. In previous work it was the main goal to mark
certain important parts of the model (features) and try to
retain them as long as possible during simplification.
However, the actual simplification of these features is again
a triangle-by-triangle simplification similar to the original
algorithm. In contrast, our approach tries to identify

(a) (b)

(c)

features as clusters of triangles and removes a whole cluster
at once in a consistent manner.

Figure 3: A model of a wheel (left). The simplification on
the right has low visual quality.

Our algorithm draws from ideas of the computer-aided
manufacturing community, where designs have to be
decomposed into meaningful semantic parts before they can
be manufactured by a machine. We employ a loop-based
feature detection algorithm to create a hierarchical tree that
structures the model. To obtain different levels of detail, we
remove several features of similar or correlated geometric
importance together, rather than in a more continuous LOD
fashion. We call this approach punctuated simplification. In
this paper we show that punctuated simplification typically
leads to relatively few steps between the full and the
simplest model. Further, the intermediate models have
better visual quality than per-vertex intermediate models of
similar complexity. The simplification tree can be used to
extract a large number of possibly view-depended levels of
detail. These LODs can be precalculated or generated
during runtime.

We believe that the idea of punctuated simplification is a
fundamentally new contribution to the world of
simplification and will help to extend the applicability of
automatic simplification algorithms to applications like
CAD, computer games, urban and architectural simulation.

2. Related Work

Simplification: There is an extensive literature on the
simplification of polygonal models. We will not try to
cover this broad literature but will rather focus on
representative work most relevant to our approach. We
refer the reader to recent surveys for a comprehensive
discussion of simplification methods [Lue01].

A variety of per-vertex algorithms have been developed
for mesh simplification. These include algorithms that
perform vertex merges [Gar97], edge collapses [Hop96], or
vertex removals [Lin96]. Some algorithms require manifold
topology [Hop96] while others are “topologically-tolerant”
[Gar97], but all work one vertex at a time. In addition there
are per-vertex algorithms that attempt to preserve
appearance by considering not only errors in surface
position caused by the simplification, but also errors due to
changes in surface color and curvature [Coh98, Gar98].
Although in principle a simplification algorithm could be
constructed that considers all these aspects of appearance,
in practice this is hard to do in an efficient and balanced
way [Jan03]. In practice either geometric or color/texture
aspects dominate.

There are also more general vertex merge algorithms
based on various multi-vertex clustering mechanisms

[Ros93, Low97]. These are rather insensitive to topology
and in the most general case do not require mesh
connectivity at all. The algorithms are fast, work well on
large out-of-core meshes, and can produce drastic
simplifications. However, it is difficult to specify the output
in terms of number of polygons for the algorithm, and the
results are not usually as visually pleasing as with per-
vertex algorithms.

In general, the vertex merge, removal or clustering
operations in all these approaches can be encoded in a tree,
which can then be traversed in any order. This gives rise to
view-dependent approaches where on-the-fly simplification
occurs based on the current user viewpoint [Lin96, Hop97].
Perspective and distance are taken into account so that
nearby geometry facing the viewer will have more detail
than distant or oblique geometry.

Several extensions to the quadric-error approach [Gar97,
Coo01,Poj03, Kho03] allow a user to specify important
parts of the model. In these extensions the simplification
process simultaneously considers the quadric error and the
user specified importance to select candidates for
simplification. However, these approaches do not address
the problem of how to identify and consistently remove
features, but rather determine the simplification order and
thereby answer the question of when to remove features. A
user-specified importance is an orthogonal contribution to
our method and could also be incorporated in our
framework.

El-Sana and Varshney [Els98] present a topology-
simplifying approach based on the concept of alpha-hulls.
The approach is able to eliminate small holes and
protuberances which can hinder and restrict extreme
simplification. However, the approach can only deal with
relatively small holes and protuberances with small gaps
and ignores the size of the protuberances themselves.

Our approach provides a set of simplifications and an
order to follow through them, but it does not do this as a
sequence of per-vertex simplifications. Alternatively, we do
not follow a clustering approach that uses some distance
criterion for determining which vertices to merge. Rather,
our punctuated simplification approach preserves planes,
edges, and orientations until they are deemed candidates for
removal, at which point they are removed all at once.

Figure 4: Three cases of mesh features. a) Smooth
surfaces: normals per vertex; the mesh is only seen as an
approximation to the actual (smooth) surface; differential
geometry applies. b) smooth surfaces with features: these
are smooth surfaces that have sharp edges and corners.
The edges and corners are called features. c) plane-
dominant objects: the mesh is the actual geometry; normals
are per polygon and not per vertex. A feature is a larger
connected part of the mesh.

Feature Detection: Feature detection starts with defining
what is meant by the word “feature”. The definition usually
depends on the context of the application and is given only

very broadly, as for example “a region of interest on the
surface of a part” [Pra85] (see Figure 4). For the actual
implementation of a feature detector, a more precise
definition is necessary. A common solution is to give an list
of features. As a consequence most feature detectors are
rule-based and each rule is able to detect a certain type of
feature. For a survey of feature detection see [Wu96].

Feature detectors can be based on convex decomposition
[Woo82, Kim92], topology of a dual face-edge graph
[Flo89], topology of a face-edge graph in combination with
geometric tests [Gav90, Mar90, Rib01] or loop detection on
the geometry of the model [Gad99][Lu99].

Our approach is most closely related to loop-based
feature detection [Lu99, Gad99]. The idea is to couple the
detection of edge loops that potentially contain a feature
together with geometric tests to verify its existence. (Note
that what we call the feature here is not the edges in the
loop but the mesh partition bounded by the loop.) We use
an adaptation of these loop-based feature detectors in our
implementation.

3. Overview

Preliminaries: As input to our algorithm we consider
triangle meshes that represent a topological 2-manifold with
boundary. Given a model that contains non-triangular
polygonal faces, the model can be triangulated first and
then processed by our algorithm.

Our algorithm accepts models with holes and multiple
non-connected parts, but we do not alter the topology of the
model during simplification, so the simplification
procedure preserves holes and keeps unconnected parts
separate. Our algorithm accepts models with self-
intersections, but our goal is not to repair erroneous input
models. Self-intersections and other errors in the input
model can result in unwanted results during simplification.

We do not attempt here to deal with large models. While
a lot of simplification research has been devoted to
handling large meshes, applications such as games and
urban visualization often call for a large number of simple
meshes as opposed to a few complex ones. In certain
situations, it may be necessary to display drastically
simplified meshes with visible approximation error. Thus, it
is important to ensure the quality of the coarser
approximations. Furthermore, man-made objects, especially
constructed objects like buildings and furniture, generally
contain more planar or near planar surfaces than organic
forms. In approximating a shape, flat regions require much
fewer linear facets than curved regions. Therefore, plane-
dominant models normally contain many fewer polygons
than those with an abundance of smooth or curvy regions.

Algorithm Overview: The algorithm has three major parts.
We will briefly describe these parts and then give more
details about these parts in the next section.
1. Feature extraction – we employ a rule-based loop-finding
method to detect the boundaries of a feature on the surface
of the model. This feature induces a partition of the mesh in
two parts.
2. Hierarchical partitioning – Using the feature extraction
method we organize the features (mesh partitions)
hierarchically.

3. Simplification – we use the hierarchy to simplify the
model.

These three steps are demonstrated on a simple example in
Figure 5, Figure 6, and Figure 7. Note that for illustrative
purposes the convex loops are ignored in these examples.

Figure 5: A simple model (left) and two detected loops on
the surface of the model shown in yellow (right).

Figure 6: This figure illustrates the partitioning of the
model from the previous figure in a hierarchical tree.

Figure 7: Two possible simplifications extracted from the
tree.

4. Feature Extraction

Our approach can be considered a general framework for
simplification. This framework incorporates explicit feature
identification and treatment into a system for generating
simplified meshes. A feature is any subset of the mesh that
can be detected by a set of rules or procedures. (The loop-
finding method described here is just one procedure that
could be used.) Thus, a feature can be arbitrarily complex.
For each feature, there is a corresponding simplification
operation. This operation can be fairly general in behavior,
so we prefer to call it a simplification treatment. Thus, both
the identification and treatment of features are defined
procedurally in the framework. The framework is flexible
since it can fall back on a traditional simplification
algorithm where features are not present.

Loop-based feature detection is based on finding closed
poly-lines on the surface of a model (a loop). The segments
of the polyline are typically edges of the triangulation. In
this section we propose a taxonomy for loop detectors. We
classify detectors according to a) the type of edges they
detect, b) how many planes are involved in defining the
feature, c) the tolerance to noise, and d) the number of
loops specifying a feature (ability to detect topological
features).
Edge type: Edges can be concave, convex, planar, or
virtual. A concave edge is an edge of the triangulation
where the adjacent faces form an angle of less than 180
degrees. A convex edge is an edge of the triangulation
where the adjacent faces form an angle of more than 180
degrees. A planar edge is an edge of the triangulation where
the two adjacent faces are coplanar. A virtual edge is a line
segment that crosses a face of the triangulation. Virtual
edges are helpful to make the loop finder more independent
of the triangulation. Figure 8 illustrates the first 3 cases.

Figure 8: Three edge types highlighted in yellow. Left –
concave. Middle – convex. Right – planar.

Number of Planes: The number of planes involved in
defining a feature greatly contributes to the complexity of
the detector. Typically one plane means that the feature is
contained in a plane of the model. For two planes the
feature is located at an edge. For three planes the feature is
typically located at a corner. However,other configurations
are possible for features of three or more planes. Figure 9
illustrates two of these possibilities.

Figure 9: A feature on a plane (left) and a feature on an
edge (right).

Noise tolerance: The tolerance to noise defines the
robustness of the detector. Typically some tolerance is
required for all detectors to compensate for numerical
imprecision, but scanned data often has a significant level
of noise that requires different approaches.
Number of loops: Some feature detection algorithms are
also able to detect topological features, such as holes in the
model. To be able to detect these features, a single loop is
no longer sufficient. To classify these features we can use
the number of loops that are necessary to specify the
feature.

5. Algorithm Details

Loop Finding
We have implemented a greedy, recursive loop finder

that is able to detect planar loops. Although faster or more
robust algorithms might be found, the focus of the current
work was not to improve existing feature detectors.

The loop finder recursively traverses halfedges until a
loop is found. A halfedge is a directional edge with a head
and a tail vertex. (For details about the halfedge data
structure, see [Bot02].) We start by selecting a seed
halfedge. To add a halfedge to the loop the next halfedge
emanates from the tail of the last halfedge. We use the
following restrictions:
1. The first halfedge h1, cannot be a planar edge or

already belong to a loop.
2. The second halfedge h2 cannot be collinear with the

first halfedge.
3. A halfedge hi (i > 2) has to lie in the plane formed by

h1 and h2. This plane is called the loop plane.
4. A halfedge hi (i > 2) cannot have two adjacent faces

that are both coplanar with the loop plane.
5. A halfedge hi (i > 2) can only extend or close the loop.

It is not allowed to touch or cross the loop.
We need some geometric tests to verify the loop. For

example, we discard loops that bound a flat polygon. It
turns out that the branching factor for this constrained
search is pretty small and the loop detection only takes a
few seconds for the models we used for our tests.

Hierarchical Partitioning
In support of the subsequent simplification phase, our
algorithm generates a hierarchy of feature partitions. Given
a triangular mesh M as a set of triangles, any given loop L
induces a partitioning of M into two subsets, M1 and M2.
This binary partition forms the basis of the hierarchy, which
emerges as a binary tree of mesh partitions.

We need to answer the following questions to build the
tree:

1) Given two mesh partitions M1 and M2 we must
decide which mesh is considered to be the feature. This is
important, because the feature and the rest of the mesh are
treated differently during the simplification phase. We
employ a simple heuristic H for the decision. We compute
the extent, H(M) = max(d(p1, p2)), where d is the Euclidian
distance metric and p1, p2 are vertices of the mesh. The
mesh partition with the smallest non-zero extent is
considered the feature. We call this the interior partition.
Note that the other partition, called the exterior partition,
might be an empty mesh.

2) To build the tree we always select the partitioning
with the largest interior partition where the exterior
partition is not empty. We choose to use the extent of the
mesh as a heuristic. This heuristic ensures that the features
are properly nested.

We then construct the tree with a recursive procedure
(see Figure 10.) For the sake of discussion, we choose to
position the interior partition as the left child and the
exterior partition as the right child. An example tree is
given in Figure 6. For models with many nested features,
the tree may contain long runs of branching from the left
child node (the internal partition node). For models with

many identical features, the tree may contain long runs of
branching from the right child node (the external partition
node).
buildtree(M)
 L = findloops(M)
 For p in L
 [M1, M2] = partition(M, p)
 I = minextent(M1, M2)
 E = maxextent(M1, M2)
 If extent(I) > extent(bestI) then
 bestI = I
 bestE = E
 Endif
 Endfor
 M.left = buildtree(bestI)
 M.right = buildtree(bestE)

Figure 10: Simplified pseudocode of the recursive
procedure for constructing the hierarchy.

Simplification
The submesh tree can be used in more than one way to
guide simplification. For example, the tree can guide the
construction of a sequence of static level-of-detail (LOD)
representations.

We need the following three procedures to implement the
simplification:

1) Simplify(M, L): For a feature mesh M that is bound
by a loop L, we need a simplification treatment that
generates a simplified version of the mesh M. We call this
Simplify(M, L). The simplification treatment for a planar
feature is typically hole-filling [Kre00] (that is triangulation
of an arbitrary polygon), but more complex operations are
possible [Rib01].

2) Coalesce(M): We need a procedure to reduce the
number of coplanar triangles in a mesh. We call this
Coalesce(M). We choose to use the framework of Garland
and Heckbert [Gar97] for this task. By selecting an error
threshold close to zero and specifying relevant loops as
constraints, we can achieve the desired effect.

3) ST(M, L): We need a cost function to determine how
much error the simplification of a feature makes. We
choose to use a simple metric calculating the surface area of
the mesh M minus the surface area of the simplified version
of M, that is ST(M, L). Depending on the amount of
semantic information available for the model, the cost
function can be made more interesting. Along with
geometric characteristics, factors such as importance,
semantic sensibility, and physical plausibility can be
incorporated into such a metric.

The process for generating static LODs is as follows.
1. Pick lowest cost feature (interior partition) node with

mesh M and loop L.
2. Calculate Simplify(M, L) and store the simplified

version with the node.
3. Collapse nodes. A node can be collapsed if the feature

child (the interior partition node) has been simplified
and the other child (the exterior partition node) does
not have any further children. To collapse a node we:

1) combine the meshes M1 and M2 of the
children to obtain M = M1 + M2

2) call Coalesce(M) on the combined geometry
and store it with the node

4. Repeat steps 2-3.
At any time the union of all leaf nodes can be calculated

to obtain a valid level-of-detail of the model. To obtain a
discrete set of static LODs we propose the following
methods: (a) find the peaks in a histogram of [errors
incurred, faces simplified]; (b) find the zero crossings of
derivatives of [errors incurred, faces simplified]; (c) round
to logarithmic steps; or (d) use thresholds. For our results,
we used a moving threshold. That is, when the error passes
e + t, where e is the last error incurred by the last LOD
(initially zero) and t is the threshold, we grab the current
LOD and update e. Note that in general, applying any of
these methods to a traditional simplification sequence like a
quadric simplification will not produce the same results as
applying them to the hierarchically partitioned mesh, which
has eliminated meaningless or incorrect simplification
steps.

6. Results

In this section we demonstrate that the proposed method
gives good results and that the consideration of features is
in fact crucial to get meaningful simplifications for man-
made objects. We demonstrate our results by comparing our
simplifications with the algorithms proposed by Garland
and Heckbert (quadrics/qslim) [Gar97] and Lindstrom and
Turk (memoryless simplification) [Lin98]. We did not try
to optimize our implementation for speed, but the
simplification times are still reasonable. To give a rough
estimate, the simplification time is under 5 seconds for the
models shown here.

The first model is the model of the wheel shown in
Figure 3. Figure 11 shows three LODs obtained using the
three simplification approaches. See the figure caption for a
description of the results. Figure 12 shows the image
differences for each of these LODs.

The second model used to illustrate our method is a
window, showing a sensible simplification sequence
(Figure 16). Finally, we present an armoire (Figure 18 and
Figure 17). We compare again against the original model.
Simplification of more complicated models, such as entire
buildings with significant detail around doors and windows,
is in progress. Preliminary results are good.

7. Discussion

Figure 13, Figure 14, and Figure 15 (last page) compare
the max, mean, and RMS errors of three approaches,
Qslim/quadric simplification (QS), memoryless
simplification (MS), and our punctuated simplification
approach (PS). Forward errors (original-to-simplified) and
backward errors (simplified-to-original) along with forward
plus backward errors are shown. Notice that for the models
tested, the visual quality of the simplifications is not fully
represented or revealed by the metrics. The difference
images seem to suggest that punctuated simplification is
better than the other approaches. However, the max, mean,
and RMS metrics give mixed results and even results

counter to what one gets from visual examination. This
confirms that different metrics, such as one based on
perception [Wil03], are sometimes necessary for evaluating
simplification quality, especially for constructed models
like these. Furthermore, even a straight-forward measure of
RMS image difference cannot account for qualitative
inaccuracies such as violation of symmetry (Figure 11) or
the creation of misrepresentative shapes (Figure 17).

Figure 11: 3 LODs obtained with Qslim (left), memoryless
simplification (center), and our algorithm (right). The 3
LODs contain 558 (top row), 318 (second row), and 76
(bottom row) triangles. Our algorithm automatically
extracts these LODs. In contrast to the other two methods,
both simplifications of our method make sense and have
good visual quality. Note that the LODs in the top row are
geometrically identical to the original (560 triangles).

Figure 12: Difference images (negative image) of the
second and third rows in Figure 11 with respect to the
original (i.e. top row).

8. Conclusions

In this paper we described the punctuated simplification
approach for simplifying man-made objects. We argued
that previous simplification algorithms are in fact mainly
applicable to models that are dominated by smooth surfaces
and that for another large class of objects (that we call man-
made objects) they often fail to calculate meaningful
results. We demonstrated that the recognition and
consistent removal of features is essential to obtain good

perceptual quality for the simplified models. We presented
an initial algorithm to attack this problem and gave a visual
comparison to previous methods.

We believe the simplification of man-made objects is an
essential problem, because these models are at the heart of
many visualization applications.

For future research, we envision several ways to extend
the implementation of the basic algorithm. Similar to other
level-of-detail algorithms, we plan to handle texturing and
view-dependent levels of details. Additionally, we think
that integration with other traditional simplification
algorithms would be important to obtain a complete system
for simplification. The major drawback of the current
approach is that general and robust feature detection is still
a challenge. We expect to study this question in the future.

Acknowledgments

This work is supported by the Department of Defense's
MURI program, administered by the Army Research
Office. We would also like to acknowledge the support of
NSF and FWF grant number J2329-N04.

References

Bot02 M. Botsch, S. Steinberg, S. Bischoff, and L. Kobbelt.

OpenMesh -- a Generic and Efficient Polygon Mesh Data
Structure. OpenSG Symposium. 2002.

Coh98 Cohen, J., Olano, M., and Manocha, D. 1998.
Appearance-Preserving Simplification of Polygonal Models.
Proc. ACM SIGGRAPH 98, pp. 115-122. 1998.

Coo01 Volker Coors. Feature-Preserving Simplification in
Web-Based 3D-GIS. First International Symposium on Smart
Graphics, New York, 2001.

Els98 J. El-Sana and A. Varshney. Topology Simplification
for Polygonal Virtual Environments. IEEE Transactions on
Visualization and Computer Graphics v.4, n.2, April 1998, pp.
133-144.

Eri01 C. Erikson, D. Manocha, and W. V. Baxter III. HLODs
for Faster Display of Large Static and Dynamic Environments.
Symposium on Interactive 3D Graphics, pp. 111-120. 2001

Flo89 Leila De Floriani. Feature extraction from boundary
models of three-dimensional objects. IEEE Transaction on
Pattern Analysis and Machine Intelligence, 11(8), pp. 785-798,
August 1989.

FRU01 C. Früh and A. Zakhor. 3D Model Generation for Cities
Using Aerial Photographs and Ground Level Laser Scans. Proc.
IEEE Computer Vision and Pattern Recognition, pp. 31-38.
2001.

Gad99 R. Gadh, Y. Lu, and T. J. Tautges. Feature
decomposition for hexahedral meshing. ASME Design
Automation Conference. 1999.

GAR97 M. Garland and P. Heckbert. Surface Simplification
Using Quadric Error Metrics. Proc. ACM SIGGRAPH 97, pp.
209-216. 1997.

Gar98 M. Garland and P. Heckbert. Simplifying Surfaces with
Color and Texture using Quadric Error Metrics. Proc. IEEE
Visualization 98, pp. 263-269. 1998.

Gav90 P. Gavankar and M.R. Henderson. Graph-based
extraction of protrusions and depressions from boundary
representations. Computer-Aided Design, 22(7), pp. 442-450.
1990.

Hop96 H. Hoppe. Progressive Meshes. Proc. ACM SIGGRAPH
96, pp. 99-108. 1996.

Hop97 H. Hoppe. View-Dependent Refinement of Progressive
Meshes. Proc. SIGGRAPH 97, pp. 189-198. 1997.

JAN03 Justin Jang, William Ribarsky, Christopher Shaw, and
Peter Wonka. Appearance-Preserving View-Dependent
Visualization., IEEE Visualization 2003, pp. 473-480. 2003.

Max (f orward)

0

0.02

0.04

0.06

Mean (f orward)

0

0.002

0.004

0.006

0.008

0.01

RMS (f orward)

0

0.005

0.01

0.015

Max (backward)

0.036

0.038

0.04

0.042

0.044

Mean (backward)

0

0.001

0.002

0.003

0.004

0.005

RMS (backward)

0

0.002

0.004

0.006

0.008

0.01

Max (f +b)

0
0.02
0.04
0.06
0.08

0.1

QS MS PS

Mean (f +b)

0

0.005

0.01

0.015

QS MS PS

RMS (f +b)

0
0.005

0.01
0.015
0.02

0.025

QS MS PS

QS MS PS QS MS PS QS MS PS

QS MS PS QS MS PS QS MS PS

JEP96 Jepson, W., Liggett, R., and Friedman, S. Virtual
Modeling of Urban Environments. Presence, 5, 1, 72-86. 1996.

Kho03 Y. Kho and M. Garland. User-Guided Simplification.
Symposium on interactive 3D Graphics 2003. pp. 123-126.
2003.

Kim92 Y. S. Kim. Recognition of form features using convex
decomposition. Computer Aided Design, 24(9), pp. 461-476.
1992.

Kre00 Marc Van Kreveld, Mark Overmars, Otfried
Schwarzkopf, Mark de Berg, and M. Van Kreveld.
Computational Geometry. Springer Verlag. 2000.

LIN96 P. Lindstrom, D. Koller, W. Ribarsky, L. F. Hodges, N.
Faust, and G. A. Turner. Real-Time, Continuous Level of Detail
Rendering of Height Fields. Proc. ACM SIGGRAPH 96, pp.
109-118. 1996.

LIN98 P. Lindstrom and G. Turk. Fast and Memory Efficient
Polygonal Simplification. Proc. IEEE Visualization '98, pp. 279-
286. 1998.

Lev02 J. Levenberg. Fast View-Dependent Level of Detail
Rendering using Cached Geometry. Proc. IEEE Visualization
2002, pp. 259-265. 2002.

Low97 K-L. Low and T.S. Tan. Model Simplification using
Vertex Clustering. Proc. ACM Symp. Interactive 3D Graphics,
pp. 75-82, 1997.

Lu99 Y. Lu, R. Gadh, and T. Tautges. Volume
Decomposition and Feature Recognition for Hexahedral Mesh
Generation. 8th International Meshing Roundtable, SAND99-
2288, Sandia National Laboratories, pp.269-280. 1999.

Lue01 David Luebke. A Developer’s Survey of Polygonal
Simplification Algorithms. IEEE Computer Graphics &
Applications, pp. 24-35, May/June. 2001.

Mar90 M. Marefat and R. L. Kashyap. Geometric reasoning for
recognition of three-dimensional object features. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
12(10), pp. 949-965. 1990.

Par01 Y. Parish, and P. Mueller. Procedural modeling of
cities. Proc. ACM SIGGRAPH 2001, pp. 301–308. 2001.

Poj03 Erik Pojar, Dieter Schmalstieg. User-controlled creation
of multiresoltion meshes. Symposium on Interactive 3D
Graphics 2003. pp. 127-130. 2003.

Pra85 M. Pratt and P. R. Wilson. Requirements for support of
form features in a solid modeling system. Technical Report R-
85-ASPP-01, CAM-I Inc., Arlington Texas, June 1985.

Rib01 J. Ribelles, P. Heckbert, M. Garland, T, Stahovich, and
V. Srivastava. Finding and Removing features from polyhedra.
ASME Design Engineering Technical Conferences. 2001.

Ros93 J. Rossignac and P. Borrel. Multi-resolution 3D
Approximations for Rendering Complex Scenes. Geometric
Modeling in Computer Graphics, pp. 455-465. 1993.

Sta04 The Stanford 3D Scanning Repository.
http://graphics.stanford.edu/data/3Dscanrep/ . 2004.

Wil03 N. Williams, D. Luebke, J. Cohen, M. Kelley, and B.
Schubert. Perceptually Guided Simplification of Lit, Textured
Meshes. Proc. 2003 ACM SIGGRAPH Symposium on
Interactive 3D Graphics, Monterey, CA, pp.113-121. 2003.

Won03 Peter Wonka, Michael Wimmer, Francois Sillion, and
William Ribarsky. Instant Architecture, Proc. ACM SIGGRAPH
2003, pp. 669-678. 2003.

Woo82 T. Woo. Feature extraction by volume decomposition.
CAD / CAM Technology in Mechanical Engineering. 1982.

Wu96 M. C. Wu, C. R. Liu. Analysis on machined feature
recognition techniques based on B-rep. Computer-Aided
Design, 28(8), pp. 603-616. 1996.

Figure 13: Max, mean, and RMS error values for the wheel
model simplifications of 318 triangles. Forward (original-
to-simplified), backward (simplified-to-original), and
forward plus backward errors are shown for qslim (QS -
left), memoryless simplification (MS - middle), and our
method (PS - right).

Max (f orward)

0

0.05

0.1

0.15

0.2

Mean (f orward)

0

0.02

0.04

0.06

RMS (f orward)

0

0.02

0.04

0.06

0.08

Max (backward)

0

0.05

0.1

0.15

Mean (backward)

0

0.005

0.01

0.015

0.02

RMS (backward)

0

0.005

0.01

0.015

0.02

0.025

Max (f +b)

0

0.1

0.2

0.3

QS MS PS

Mean (f +b)

0

0.02

0.04

0.06

QS MS PS

RMS (f +b)

0
0.02
0.04
0.06
0.08

0.1

QS MS PS

QS MS PS QS MS PS QS MS PS

QS MS PS QS MS PS QS MS PS

Figure 14: Max, mean, and RMS errors for the wheel
model simplifications of 76 triangles. Forward, backward,
and forward plus backward errors are shown for (QS),
(MS), and our method (PS).

http://graphics.stanford.edu/data/3Dscanrep/

Max (f orward)

0

0.05

0.1

0.15

0.2

Mean (f orward)

0

0.005

0.01

0.015

0.02

RMS (f orward)

0

0.01

0.02

0.03

0.04

0.05

Max (backward)

0

0.05

0.1

0.15

0.2

Mean (backward)

0.0015

0.0016

0.0017

0.0018

0.0019

0.002

RMS (backward)

0

0.005

0.01

Max (f +b)

0
0.05

0.1
0.15
0.2

0.25

QS MS PS

Mean (f +b)

0

0.005

0.01

0.015

0.02

QS MS PS

RMS (f +b)

0

0.02

0.04

0.06

QS MS PS

QS MS PS QS MS PS QS MS PS

QS MS PS QS MS PS QS MS PS

Figure 16: A sequence of simplifications of a window
model is automatically extracted with our algorithm. Entire
features are removed per step, while the rest of the model is
retained.

Figure 15: Max, mean, and RMS errors for the armoire
simplifications of 94 triangles (from lod 5 of 10). Forward,
backward, and forward plus backward errors are shown
for (QS), (MS), and our method (PS).

Figure 18: Top left: The original armoire model with 476 polygons. Bottom left: Wireframe of original. Top row: Selected
simplifications using our algorithm (94 triangles), Qslim (94 triangles), memoryless simplification (94 triangles), and Maya
(96 triangles). Bottom row: Corresponding difference images (negative image) of the simplifications to the original.

Figure 17: Close-up of armoire. All images correspond to those in Figure 18. Notice that triangle-shaped artifacts appear on
the Qslim, memoryless, and Maya results. Also notice the difference in size and angle of the bevel on the armoire doors.

	Punctuated Simplification of Man-Made Objects
	Abstract
	1. Introduction
	2. Related Work
	3. Overview
	4. Feature Extraction
	5. Algorithm Details
	Loop Finding
	Simplification

	6. Results
	7. Discussion
	8. Conclusions
	Acknowledgments

	References

