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Abstract 
We present a simplification algorithm for manifold polygonal meshes of plane-dominant models. Models of this type are likely to 
appear in man-made environments. While traditional simplification algorithms focus on generality and smooth meshes, the 
approach presented here considers a specific class of man-made models. By detecting and classifying edge loops on the mesh and 
providing a guided series of binary mesh partitions, the approach generates a series of simplified models, each of which better 
respects the semantic feel of these kinds of models than conventional approaches. A guiding principle is to eliminate simplifications 
that do not make sense in constructed environments. This, coupled with the concept of “punctuated simplification”, leads to an 
approach that has both efficiency and high visual quality. Comparative results are given. 
 
1. Introduction 
 
A great deal of current modeling and visualization effort is 
directed towards triangle meshes. Models produced often 
have a high amount of geometric detail. To maintain high 
frame rates during interactive visualization, it is a common 
strategy to create different levels of simplification for one 
object and switch between these representations during 
runtime. The levels of simplifications are also called levels 
of detail (or LODs) of the model. 

Simplification algorithms are often demonstrated on 
models from the Stanford scanning repository [Sta04], 
which includes the well-known models of a bunny, a 
Buddha statue and Michelangelo’s David. These models 
can be iteratively simplified where each new level of 
simplification has one vertex less than the previous one 
[Gar97] [Hop96]. 

Although impressive results can be achieved for these 
models, there is still the lingering problem that current 
automatic simplification algorithms perform poorly on a 
large class of objects, man-made objects. Often designers 
still have to create simplified versions along with the 
original versions for these models. 

In contrast to the previously mentioned models, which 
are dominated by smooth differential surfaces, man-made 
objects are usually dominated by features. These models 
contain many sharp edges and for large parts of the model 
the triangular mesh is not an approximation to a smooth 
differential surface. Instead, the mesh represents the actual 
piece-wise linear surface. Examples include furniture, 
machine parts, electronic devices and buildings (Figure 1). 

 
Figure 1: Models with differential (left) and non-
differential (right) surfaces. 

If we apply current simplification methods to man-made 
models, various incongruities may occur and result in 

simplifications that deviate from the ideal. The following 
are weaknesses of per-vertex simplification schemes: 
- Small features are merged into new larger ones. This is 
illustrated in Figure 2a. Here, the larger features have 
characteristics not present in the smaller features. In this 
case, new face orientations are introduced. 
- Many intermediate steps of the calculated simplifications 
are intuitively not correct (see Figure 2b). The 
simplification of a wheel in Figure 3 illustrates this 
problem. The simplification shown on the right has a low 
visual quality (in this case due to violation of symmetry 
(also see Figure 2c)) and is not very useful for most 
applications. 
- It is not clear which intermediate simplification steps are 
meaningful. 

 
Figure 2: Problems with successive vertex merging. Small 
features merge into larger ones (a). In the window with 
frame (b) and the circle (c), some intermediate steps are 
intuitively not correct. 

In this paper we take a different approach to the 
simplification of man-made objects. Our approach seeks to 
identify features in a model and removes them in a 
consistent manner. Note that our approach to handle 
features is different than previous approaches [Kho03, 
Poj03]. In previous work it was the main goal to mark 
certain important parts of the model (features) and try to 
retain them as long as possible during simplification. 
However, the actual simplification of these features is again 
a triangle-by-triangle simplification similar to the original 
algorithm. In contrast, our approach tries to identify 

(a) (b) 

(c)



features as clusters of triangles and removes a whole cluster 
at once in a consistent manner. 

 
Figure 3: A model of a wheel (left). The simplification on 
the right has low visual quality. 

Our algorithm draws from ideas of the computer-aided 
manufacturing community, where designs have to be 
decomposed into meaningful semantic parts before they can 
be manufactured by a machine. We employ a loop-based 
feature detection algorithm to create a hierarchical tree that 
structures the model. To obtain different levels of detail, we 
remove several features of similar or correlated geometric 
importance together, rather than in a more continuous LOD 
fashion. We call this approach punctuated simplification. In 
this paper we show that punctuated simplification typically 
leads to relatively few steps between the full and the 
simplest model. Further, the intermediate models have 
better visual quality than per-vertex intermediate models of 
similar complexity. The simplification tree can be used to 
extract a large number of possibly view-depended levels of 
detail. These LODs can be precalculated or generated 
during runtime. 

We believe that the idea of punctuated simplification is a 
fundamentally new contribution to the world of 
simplification and will help to extend the applicability of 
automatic simplification algorithms to applications like 
CAD, computer games, urban and architectural simulation. 
 
2. Related Work 

 
Simplification: There is an extensive literature on the 
simplification of polygonal models. We will not try to 
cover this broad literature but will rather focus on 
representative work most relevant to our approach. We 
refer the reader to recent surveys for a comprehensive 
discussion of simplification methods [Lue01]. 

A variety of per-vertex algorithms have been developed 
for mesh simplification. These include algorithms that 
perform vertex merges [Gar97], edge collapses [Hop96], or 
vertex removals [Lin96]. Some algorithms require manifold 
topology [Hop96] while others are “topologically-tolerant” 
[Gar97], but all work one vertex at a time. In addition there 
are per-vertex algorithms that attempt to preserve 
appearance by considering not only errors in surface 
position caused by the simplification, but also errors due to 
changes in surface color and curvature [Coh98, Gar98]. 
Although in principle a simplification algorithm could be 
constructed that considers all these aspects of appearance, 
in practice this is hard to do in an efficient and balanced 
way [Jan03]. In practice either geometric or color/texture 
aspects dominate. 

There are also more general vertex merge algorithms 
based on various multi-vertex clustering mechanisms 

[Ros93, Low97]. These are rather insensitive to topology 
and in the most general case do not require mesh 
connectivity at all. The algorithms are fast, work well on 
large out-of-core meshes, and can produce drastic 
simplifications. However, it is difficult to specify the output 
in terms of number of polygons for the algorithm, and the 
results are not usually as visually pleasing as with per-
vertex algorithms. 

In general, the vertex merge, removal or clustering 
operations in all these approaches can be encoded in a tree, 
which can then be traversed in any order. This gives rise to 
view-dependent approaches where on-the-fly simplification 
occurs based on the current user viewpoint [Lin96, Hop97]. 
Perspective and distance are taken into account so that 
nearby geometry facing the viewer will have more detail 
than distant or oblique geometry. 

Several extensions to the quadric-error approach [Gar97, 
Coo01,Poj03, Kho03] allow a user to specify important 
parts of the model. In these extensions the simplification 
process simultaneously considers the quadric error and the 
user specified importance to select candidates for 
simplification. However, these approaches do not address 
the problem of how to identify and consistently remove 
features, but rather determine the simplification order and 
thereby answer the question of when to remove features. A 
user-specified importance is an orthogonal contribution to 
our method and could also be incorporated in our 
framework. 

El-Sana and Varshney [Els98] present a topology-
simplifying approach based on the concept of alpha-hulls. 
The approach is able to eliminate small holes and 
protuberances which can hinder and restrict extreme 
simplification. However, the approach can only deal with 
relatively small holes and protuberances with small gaps 
and ignores the size of the protuberances themselves. 

Our approach provides a set of simplifications and an 
order to follow through them, but it does not do this as a 
sequence of per-vertex simplifications. Alternatively, we do 
not follow a clustering approach that uses some distance 
criterion for determining which vertices to merge. Rather, 
our punctuated simplification approach preserves planes, 
edges, and orientations until they are deemed candidates for 
removal, at which point they are removed all at once. 
 

 
Figure 4: Three cases of mesh features. a) Smooth 
surfaces: normals per vertex; the mesh is only seen as an 
approximation to the actual (smooth) surface; differential 
geometry applies. b) smooth surfaces with features: these 
are smooth surfaces that have sharp edges and corners. 
The edges and corners are called features. c) plane-
dominant objects: the mesh is the actual geometry; normals 
are per polygon and not per vertex. A feature is a larger 
connected part of the mesh. 

Feature Detection: Feature detection starts with defining 
what is meant by the word “feature”. The definition usually 
depends on the context of the application and is given only 



very broadly, as for example “a region of interest on the 
surface of a part” [Pra85] (see Figure 4). For the actual 
implementation of a feature detector, a more precise 
definition is necessary. A common solution is to give an list 
of features. As a consequence most feature detectors are 
rule-based and each rule is able to detect a certain type of 
feature. For a survey of feature detection see [Wu96]. 

Feature detectors can be based on convex decomposition 
[Woo82, Kim92], topology of a dual face-edge graph 
[Flo89], topology of a face-edge graph in combination with 
geometric tests [Gav90, Mar90, Rib01] or loop detection on 
the geometry of the model [Gad99][Lu99]. 

Our approach is most closely related to loop-based 
feature detection [Lu99, Gad99]. The idea is to couple the 
detection of edge loops that potentially contain a feature 
together with geometric tests to verify its existence. (Note 
that what we call the feature here is not the edges in the 
loop but the mesh partition bounded by the loop.) We use 
an adaptation of these loop-based feature detectors in our 
implementation. 

 
3. Overview 

 
Preliminaries: As input to our algorithm we consider 
triangle meshes that represent a topological 2-manifold with 
boundary. Given a model that contains non-triangular 
polygonal faces, the model can be triangulated first and 
then processed by our algorithm. 

Our algorithm accepts models with holes and multiple 
non-connected parts, but we do not alter the topology of the 
model during simplification, so the simplification 
procedure preserves holes and keeps unconnected parts 
separate. Our algorithm accepts models with self-
intersections, but our goal is not to repair erroneous input 
models. Self-intersections and other errors in the input 
model can result in unwanted results during simplification. 

We do not attempt here to deal with large models. While 
a lot of simplification research has been devoted to 
handling large meshes, applications such as games and 
urban visualization often call for a large number of simple 
meshes as opposed to a few complex ones. In certain 
situations, it may be necessary to display drastically 
simplified meshes with visible approximation error. Thus, it 
is important to ensure the quality of the coarser 
approximations. Furthermore, man-made objects, especially 
constructed objects like buildings and furniture, generally 
contain more planar or near planar surfaces than organic 
forms. In approximating a shape, flat regions require much 
fewer linear facets than curved regions. Therefore, plane-
dominant models normally contain many fewer polygons 
than those with an abundance of smooth or curvy regions. 

 
Algorithm Overview: The algorithm has three major parts. 
We will briefly describe these parts and then give more 
details about these parts in the next section. 
1. Feature extraction – we employ a rule-based loop-finding 
method to detect the boundaries of a feature on the surface 
of the model. This feature induces a partition of the mesh in 
two parts. 
2. Hierarchical partitioning – Using the feature extraction 
method we organize the features (mesh partitions) 
hierarchically. 

3. Simplification – we use the hierarchy to simplify the 
model. 

 
These three steps are demonstrated on a simple example in 
Figure 5, Figure 6, and Figure 7. Note that for illustrative 
purposes the convex loops are ignored in these examples. 

 

 
Figure 5: A simple model (left) and two detected loops on 
the surface of the model shown in yellow (right). 

 

 
Figure 6: This figure illustrates the partitioning of the 
model from the previous figure in a hierarchical tree. 

 
Figure 7: Two possible simplifications extracted from the 
tree. 

4. Feature Extraction 
 

Our approach can be considered a general framework for 
simplification. This framework incorporates explicit feature 
identification and treatment into a system for generating 
simplified meshes. A feature is any subset of the mesh that 
can be detected by a set of rules or procedures. (The loop-
finding method described here is just one procedure that 
could be used.) Thus, a feature can be arbitrarily complex. 
For each feature, there is a corresponding simplification 
operation. This operation can be fairly general in behavior, 
so we prefer to call it a simplification treatment. Thus, both 
the identification and treatment of features are defined 
procedurally in the framework. The framework is flexible 
since it can fall back on a traditional simplification 
algorithm where features are not present. 



Loop-based feature detection is based on finding closed 
poly-lines on the surface of a model (a loop). The segments 
of the polyline are typically edges of the triangulation. In 
this section we propose a taxonomy for loop detectors. We 
classify detectors according to a) the type of edges they 
detect, b) how many planes are involved in defining the 
feature, c) the tolerance to noise, and d) the number of 
loops specifying a feature (ability to detect topological 
features). 
Edge type: Edges can be concave, convex, planar, or 
virtual. A concave edge is an edge of the triangulation 
where the adjacent faces form an angle of less than 180 
degrees. A convex edge is an edge of the triangulation 
where the adjacent faces form an angle of more than 180 
degrees. A planar edge is an edge of the triangulation where 
the two adjacent faces are coplanar. A virtual edge is a line 
segment that crosses a face of the triangulation. Virtual 
edges are helpful to make the loop finder more independent 
of the triangulation. Figure 8 illustrates the first 3 cases. 
 

 
Figure 8: Three edge types highlighted in yellow. Left – 
concave. Middle – convex. Right – planar. 

Number of Planes: The number of planes involved in 
defining a feature greatly contributes to the complexity of 
the detector. Typically one plane means that the feature is 
contained in a plane of the model. For two planes the 
feature is located at an edge. For three planes the feature is 
typically located at a corner. However,other configurations 
are possible for features of three or more planes. Figure 9 
illustrates two of these possibilities. 
 

 
Figure 9: A feature on a plane (left) and a feature on an 
edge (right). 

Noise tolerance: The tolerance to noise defines the 
robustness of the detector. Typically some tolerance is 
required for all detectors to compensate for numerical 
imprecision, but scanned data often has a significant level 
of noise that requires different approaches. 
Number of loops: Some feature detection algorithms are 
also able to detect topological features, such as holes in the 
model. To be able to detect these features, a single loop is 
no longer sufficient. To classify these features we can use 
the number of loops that are necessary to specify the 
feature. 
 

5. Algorithm Details 
 

Loop Finding 
We have implemented a greedy, recursive loop finder 

that is able to detect planar loops. Although faster or more 
robust algorithms might be found, the focus of the current 
work was not to improve existing feature detectors. 

The loop finder recursively traverses halfedges until a 
loop is found. A halfedge is a directional edge with a head 
and a tail vertex. (For details about the halfedge data 
structure, see [Bot02].) We start by selecting a seed 
halfedge. To add a halfedge to the loop the next halfedge 
emanates from the tail of the last halfedge. We use the 
following restrictions: 
1. The first halfedge h1, cannot be a planar edge or 

already belong to a loop. 
2. The second halfedge h2 cannot be collinear with the 

first halfedge. 
3. A halfedge hi (i > 2) has to lie in the plane formed by 

h1 and h2. This plane is called the loop plane. 
4. A halfedge hi (i > 2) cannot have two adjacent faces 

that are both coplanar with the loop plane. 
5. A halfedge hi (i > 2) can only extend or close the loop. 

It is not allowed to touch or cross the loop. 
We need some geometric tests to verify the loop. For 

example, we discard loops that bound a flat polygon. It 
turns out that the branching factor for this constrained 
search is pretty small and the loop detection only takes a 
few seconds for the models we used for our tests. 

 
Hierarchical Partitioning 
In support of the subsequent simplification phase, our 
algorithm generates a hierarchy of feature partitions. Given 
a triangular mesh M as a set of triangles, any given loop L 
induces a partitioning of M into two subsets, M1 and M2. 
This binary partition forms the basis of the hierarchy, which 
emerges as a binary tree of mesh partitions. 

We need to answer the following questions to build the 
tree: 

1) Given two mesh partitions M1 and M2 we must 
decide which mesh is considered to be the feature. This is 
important, because the feature and the rest of the mesh are 
treated differently during the simplification phase. We 
employ a simple heuristic H for the decision. We compute 
the extent, H(M) = max(d(p1, p2)), where d is the Euclidian 
distance metric and p1, p2 are vertices of the mesh. The 
mesh partition with the smallest non-zero extent is 
considered the feature. We call this the interior partition. 
Note that the other partition, called the exterior partition, 
might be an empty mesh. 

2) To build the tree we always select the partitioning 
with the largest interior partition where the exterior 
partition is not empty. We choose to use the extent of the 
mesh as a heuristic. This heuristic ensures that the features 
are properly nested. 

We then construct the tree with a recursive procedure 
(see Figure 10.) For the sake of discussion, we choose to 
position the interior partition as the left child and the 
exterior partition as the right child. An example tree is 
given in Figure 6. For models with many nested features, 
the tree may contain long runs of branching from the left 
child node (the internal partition node). For models with 



many identical features, the tree may contain long runs of 
branching from the right child node (the external partition 
node). 
buildtree(M) 
  L = findloops(M) 
  For p in L 
    [M1, M2] = partition(M, p) 
    I = minextent(M1, M2) 
    E = maxextent(M1, M2) 
    If extent(I) > extent(bestI) then 
      bestI = I 
      bestE = E 
    Endif 
  Endfor 
  M.left = buildtree(bestI) 
  M.right = buildtree(bestE) 
 

Figure 10: Simplified pseudocode of the recursive 
procedure for constructing the hierarchy. 

 
Simplification 
The submesh tree can be used in more than one way to 
guide simplification. For example, the tree can guide the 
construction of a sequence of static level-of-detail (LOD) 
representations. 

We need the following three procedures to implement the 
simplification:  

1) Simplify(M, L): For a feature mesh M that is bound 
by a loop L, we need a simplification treatment that 
generates a simplified version of the mesh M. We call this 
Simplify(M, L). The simplification treatment for a planar 
feature is typically hole-filling [Kre00] (that is triangulation 
of an arbitrary polygon), but more complex operations are 
possible [Rib01].  

2) Coalesce(M): We need a procedure to reduce the 
number of coplanar triangles in a mesh. We call this 
Coalesce(M). We choose to use the framework of Garland 
and Heckbert [Gar97] for this task. By selecting an error 
threshold close to zero and specifying relevant loops as 
constraints, we can achieve the desired effect.  

3) ST(M, L): We need a cost function to determine how 
much error the simplification of a feature makes. We 
choose to use a simple metric calculating the surface area of 
the mesh M minus the surface area of the simplified version 
of M, that is ST(M, L).  Depending on the amount of 
semantic information available for the model, the cost 
function can be made more interesting. Along with 
geometric characteristics, factors such as importance, 
semantic sensibility, and physical plausibility can be 
incorporated into such a metric. 

 
The process for generating static LODs is as follows. 
1. Pick lowest cost feature (interior partition) node with 

mesh M and loop L. 
2. Calculate Simplify(M, L) and store the simplified 

version with the node. 
3. Collapse nodes. A node can be collapsed if the feature 

child (the interior partition node) has been simplified 
and the other child (the exterior partition node) does 
not have any further children. To collapse a node we: 

1) combine the meshes M1 and M2 of the 
children to obtain M = M1 + M2 

2) call Coalesce(M) on the combined geometry 
and store it with the node 

4. Repeat steps 2-3. 
At any time the union of all leaf nodes can be calculated 

to obtain a valid level-of-detail of the model. To obtain a 
discrete set of static LODs we propose the following 
methods: (a) find the peaks in a histogram of [errors 
incurred, faces simplified]; (b) find the zero crossings of 
derivatives of [errors incurred, faces simplified]; (c) round 
to logarithmic steps; or (d) use thresholds. For our results, 
we used a moving threshold. That is, when the error passes 
e + t, where e is the last error incurred by the last LOD 
(initially zero) and t is the threshold, we grab the current 
LOD and update e. Note that in general, applying any of 
these methods to a traditional simplification sequence like a 
quadric simplification will not produce the same results as 
applying them to the hierarchically partitioned mesh, which 
has eliminated meaningless or incorrect simplification 
steps. 
 
6. Results 
 
In this section we demonstrate that the proposed method 
gives good results and that the consideration of features is 
in fact crucial to get meaningful simplifications for man-
made objects. We demonstrate our results by comparing our 
simplifications with the algorithms proposed by Garland 
and Heckbert (quadrics/qslim) [Gar97] and Lindstrom and 
Turk (memoryless simplification) [Lin98]. We did not try 
to optimize our implementation for speed, but the 
simplification times are still reasonable. To give a rough 
estimate, the simplification time is under 5 seconds for the 
models shown here. 

The first model is the model of the wheel shown in 
Figure 3. Figure 11 shows three LODs obtained using the 
three simplification approaches. See the figure caption for a 
description of the results. Figure 12 shows the image 
differences for each of these LODs. 

The second model used to illustrate our method is a 
window, showing a sensible simplification sequence 
(Figure 16). Finally, we present an armoire (Figure 18 and 
Figure 17). We compare again against the original model. 
Simplification of more complicated models, such as entire 
buildings with significant detail around doors and windows, 
is in progress. Preliminary results are good. 

 
7. Discussion 
 

Figure 13, Figure 14, and Figure 15 (last page) compare 
the max, mean, and RMS errors of three approaches, 
Qslim/quadric simplification (QS), memoryless 
simplification (MS), and our punctuated simplification 
approach (PS). Forward errors (original-to-simplified) and 
backward errors (simplified-to-original) along with forward 
plus backward errors are shown. Notice that for the models 
tested, the visual quality of the simplifications is not fully 
represented or revealed by the metrics. The difference 
images seem to suggest that punctuated simplification is 
better than the other approaches. However, the max, mean, 
and RMS metrics give mixed results and even results 



counter to what one gets from visual examination. This 
confirms that different metrics, such as one based on 
perception [Wil03], are sometimes necessary for evaluating 
simplification quality, especially for constructed models 
like these. Furthermore, even a straight-forward measure of 
RMS image difference cannot account for qualitative 
inaccuracies such as violation of symmetry (Figure 11) or 
the creation of misrepresentative shapes (Figure 17). 

 

 
Figure 11: 3 LODs obtained with Qslim (left), memoryless 
simplification (center), and our algorithm (right). The 3 
LODs contain 558 (top row), 318 (second row), and 76 
(bottom row) triangles. Our algorithm automatically 
extracts these LODs. In contrast to the other two methods, 
both simplifications of our method make sense and have 
good visual quality. Note that the LODs in the top row are 
geometrically identical to the original (560 triangles). 

 
Figure 12: Difference images (negative image) of the 
second and third rows in Figure 11 with respect to the 
original (i.e. top row). 

 
8. Conclusions 

In this paper we described the punctuated simplification 
approach for simplifying man-made objects. We argued 
that previous simplification algorithms are in fact mainly 
applicable to models that are dominated by smooth surfaces 
and that for another large class of objects (that we call man-
made objects) they often fail to calculate meaningful 
results. We demonstrated that the recognition and 
consistent removal of features is essential to obtain good 

perceptual quality for the simplified models. We presented 
an initial algorithm to attack this problem and gave a visual 
comparison to previous methods. 

We believe the simplification of man-made objects is an 
essential problem, because these models are at the heart of 
many visualization applications. 

For future research, we envision several ways to extend 
the implementation of the basic algorithm. Similar to other 
level-of-detail algorithms, we plan to handle texturing and 
view-dependent levels of details. Additionally, we think 
that integration with other traditional simplification 
algorithms would be important to obtain a complete system 
for simplification. The major drawback of the current 
approach is that general and robust feature detection is still 
a challenge. We expect to study this question in the future. 
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Figure 13: Max, mean, and RMS error values for the wheel 
model simplifications of 318 triangles. Forward (original-
to-simplified), backward (simplified-to-original), and 
forward plus backward errors are shown for qslim (QS - 
left), memoryless simplification (MS - middle), and our 
method (PS - right).  
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Figure 14: Max, mean, and RMS errors for the wheel 
model simplifications of 76 triangles. Forward, backward, 
and forward plus backward errors are shown for (QS), 
(MS), and our method (PS). 
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Figure 16: A sequence of simplifications of a window 
model is automatically extracted with our algorithm. Entire 
features are removed per step, while the rest of the model is 
retained. 

 

 
Figure 15: Max, mean, and RMS errors for the armoire 
simplifications of 94 triangles (from lod 5 of 10). Forward, 
backward, and forward plus backward errors are shown 
for (QS), (MS), and our method (PS). 

 

 

Figure 18: Top left: The original armoire model with 476 polygons. Bottom left: Wireframe of original. Top row: Selected 
simplifications using our algorithm (94 triangles), Qslim (94 triangles), memoryless simplification (94 triangles), and Maya
(96 triangles). Bottom row: Corresponding difference images (negative image) of the simplifications to the original. 

Figure 17: Close-up of armoire. All images correspond to those in Figure 18. Notice that triangle-shaped artifacts appear on 
the Qslim, memoryless, and Maya results. Also notice the difference in size and angle of the bevel on the armoire doors. 
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